BIO337 2014

From Marcotte Lab
Revision as of 23:40, 10 January 2014 by Marcotte (Talk | contribs)

Jump to: navigation, search

BIO337 Systems Biology/Bioinformatics

Course unique #: 50524
Lectures: Tues/Thurs 11 – 12:30 PM in BUR 212
Instructor: Edward Marcotte, marcotte@icmb.utexas.edu

  • Office hours: Wed 11 AM – 12 noon in MBB 3.148BA Phone: 512-471-5435

TA: Dakota Derryberry, dakotaz@utexas.edu

  • TA Office hours: Mon 4 - 5 PM/Fri 9 – 10 AM in MBB 3.304 Phone: 512-232-2459

Lectures & Handouts

Syllabus & course outline

Course syllabus

An introduction to systems biology and bioinformatics, emphasizing quantitative analysis of high-throughput biological data, and covering typical data, data analysis, and computer algorithms. Topics will include introductory probability and statistics, basics of Python programming, protein and nucleic acid sequence analysis, genome sequencing and assembly, proteomics, synthetic biology, analysis of large-scale gene expression data, data clustering, biological pattern recognition, and gene and protein networks.

Open to upper division undergraduates in natural sciences and engineering.
Prerequisites: Biochem I or equivalent (e.g. CH339J or CH339K/L), basic familiarity with molecular biology.

Note that this is not a course on practical sequence analysis or using web-based tools. Although we will use a number of these to help illustrate points, the focus of the course will be on learning the underlying algorithms and exploratory data analyses and their applications, esp. in high-throughput biology.

Most of the lectures will be from research articles and slides posted online, with some material from the...
Optional text (for sequence analysis): Biological sequence analysis, by R. Durbin, S. Eddy, A. Krogh, G. Mitchison (Cambridge University Press),

For biologists rusty on their stats, The Cartoon Guide to Statistics (Gonick/Smith) is very good.

Some online references:
An online bioinformatics course
Assorted bioinformatics resources on the web: #1, #2
Python coding for beginners
Beginning Python for Bioinformatics
Online probability texts: #1, #2, #3

No exams will be given. Grades will be based on online homework (counting 30% of the grade), 3 problem sets (given every 2-3 weeks and counting 15% each towards the final grade) and a course project (25% of final grade), which will be collaborative. Cross-discipline collaborations will be encouraged. The course project will consist of a research project on a bioinformatics topic chosen by the students (with approval by the instructor) containing an element of independent computational biology research (e.g. calculation, programming, database analysis, etc.). This will be turned in as a link to a web page.

Online homework will be assigned and evaluated using the free bioinformatics web resource Rosalind.

The final project is due by midnight April 28, 2014.